3.1.62 \(\int \frac {(e \sin (c+d x))^{3/2}}{a+b \cos (c+d x)} \, dx\) [62]

Optimal. Leaf size=410 \[ \frac {\sqrt [4]{-a^2+b^2} e^{3/2} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{b^{3/2} d}+\frac {\sqrt [4]{-a^2+b^2} e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{b^{3/2} d}+\frac {2 a e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 d \sqrt {e \sin (c+d x)}}-\frac {a \left (a^2-b^2\right ) e^2 \Pi \left (\frac {2 b}{b-\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 \left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \sin (c+d x)}}-\frac {a \left (a^2-b^2\right ) e^2 \Pi \left (\frac {2 b}{b+\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 \left (a^2-b \left (b+\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \sin (c+d x)}}-\frac {2 e \sqrt {e \sin (c+d x)}}{b d} \]

[Out]

(-a^2+b^2)^(1/4)*e^(3/2)*arctan(b^(1/2)*(e*sin(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/b^(3/2)/d+(-a^2+b^2)^(1
/4)*e^(3/2)*arctanh(b^(1/2)*(e*sin(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/b^(3/2)/d-2*a*e^2*(sin(1/2*c+1/4*Pi
+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*sin(d*x+c)^(1/2)/b^2
/d/(e*sin(d*x+c))^(1/2)+a*(a^2-b^2)*e^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*Elliptic
Pi(cos(1/2*c+1/4*Pi+1/2*d*x),2*b/(b-(-a^2+b^2)^(1/2)),2^(1/2))*sin(d*x+c)^(1/2)/b^2/d/(a^2-b*(b-(-a^2+b^2)^(1/
2)))/(e*sin(d*x+c))^(1/2)+a*(a^2-b^2)*e^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*Ellipt
icPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*sin(d*x+c)^(1/2)/b^2/d/(a^2-b*(b+(-a^2+b^2)^(
1/2)))/(e*sin(d*x+c))^(1/2)-2*e*(e*sin(d*x+c))^(1/2)/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.58, antiderivative size = 410, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 11, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {2774, 2946, 2721, 2720, 2781, 2886, 2884, 335, 218, 214, 211} \begin {gather*} \frac {e^{3/2} \sqrt [4]{b^2-a^2} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{b^{3/2} d}-\frac {a e^2 \left (a^2-b^2\right ) \sqrt {\sin (c+d x)} \Pi \left (\frac {2 b}{b-\sqrt {b^2-a^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{b^2 d \left (a^2-b \left (b-\sqrt {b^2-a^2}\right )\right ) \sqrt {e \sin (c+d x)}}-\frac {a e^2 \left (a^2-b^2\right ) \sqrt {\sin (c+d x)} \Pi \left (\frac {2 b}{b+\sqrt {b^2-a^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{b^2 d \left (a^2-b \left (\sqrt {b^2-a^2}+b\right )\right ) \sqrt {e \sin (c+d x)}}+\frac {e^{3/2} \sqrt [4]{b^2-a^2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{b^{3/2} d}+\frac {2 a e^2 \sqrt {\sin (c+d x)} F\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{b^2 d \sqrt {e \sin (c+d x)}}-\frac {2 e \sqrt {e \sin (c+d x)}}{b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Sin[c + d*x])^(3/2)/(a + b*Cos[c + d*x]),x]

[Out]

((-a^2 + b^2)^(1/4)*e^(3/2)*ArcTan[(Sqrt[b]*Sqrt[e*Sin[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(b^(3/2)*d) +
 ((-a^2 + b^2)^(1/4)*e^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[e*Sin[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(b^(3/2)*d)
 + (2*a*e^2*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(b^2*d*Sqrt[e*Sin[c + d*x]]) - (a*(a^2 - b^2)
*e^2*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(b^2*(a^2 - b*(b - Sq
rt[-a^2 + b^2]))*d*Sqrt[e*Sin[c + d*x]]) - (a*(a^2 - b^2)*e^2*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c - Pi
/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(b^2*(a^2 - b*(b + Sqrt[-a^2 + b^2]))*d*Sqrt[e*Sin[c + d*x]]) - (2*e*Sqrt[
e*Sin[c + d*x]])/(b*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2774

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + p))), x] + Dist[g^2*((p - 1)/(b*(m + p))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*(b + a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] &&
NeQ[a^2 - b^2, 0] && GtQ[p, 1] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p]

Rule 2781

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, Dist[-a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[b*(g/f), Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2946

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {(e \sin (c+d x))^{3/2}}{a+b \cos (c+d x)} \, dx &=-\frac {2 e \sqrt {e \sin (c+d x)}}{b d}-\frac {e^2 \int \frac {-b-a \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx}{b}\\ &=-\frac {2 e \sqrt {e \sin (c+d x)}}{b d}+\frac {\left (a e^2\right ) \int \frac {1}{\sqrt {e \sin (c+d x)}} \, dx}{b^2}+\frac {\left (\left (-a^2+b^2\right ) e^2\right ) \int \frac {1}{(a+b \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx}{b^2}\\ &=-\frac {2 e \sqrt {e \sin (c+d x)}}{b d}-\frac {\left (a \sqrt {-a^2+b^2} e^2\right ) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {-a^2+b^2}-b \sin (c+d x)\right )} \, dx}{2 b^2}-\frac {\left (a \sqrt {-a^2+b^2} e^2\right ) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {-a^2+b^2}+b \sin (c+d x)\right )} \, dx}{2 b^2}+\frac {\left (\left (a^2-b^2\right ) e^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (\left (a^2-b^2\right ) e^2+b^2 x^2\right )} \, dx,x,e \sin (c+d x)\right )}{b d}+\frac {\left (a e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{b^2 \sqrt {e \sin (c+d x)}}\\ &=\frac {2 a e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 d \sqrt {e \sin (c+d x)}}-\frac {2 e \sqrt {e \sin (c+d x)}}{b d}+\frac {\left (2 \left (a^2-b^2\right ) e^3\right ) \text {Subst}\left (\int \frac {1}{\left (a^2-b^2\right ) e^2+b^2 x^4} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{b d}-\frac {\left (a \sqrt {-a^2+b^2} e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {-a^2+b^2}-b \sin (c+d x)\right )} \, dx}{2 b^2 \sqrt {e \sin (c+d x)}}-\frac {\left (a \sqrt {-a^2+b^2} e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {-a^2+b^2}+b \sin (c+d x)\right )} \, dx}{2 b^2 \sqrt {e \sin (c+d x)}}\\ &=\frac {2 a e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 d \sqrt {e \sin (c+d x)}}+\frac {a \sqrt {-a^2+b^2} e^2 \Pi \left (\frac {2 b}{b-\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}}-\frac {a \sqrt {-a^2+b^2} e^2 \Pi \left (\frac {2 b}{b+\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}}-\frac {2 e \sqrt {e \sin (c+d x)}}{b d}+\frac {\left (\sqrt {-a^2+b^2} e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e-b x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{b d}+\frac {\left (\sqrt {-a^2+b^2} e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e+b x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{b d}\\ &=\frac {\sqrt [4]{-a^2+b^2} e^{3/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{b^{3/2} d}+\frac {\sqrt [4]{-a^2+b^2} e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{b^{3/2} d}+\frac {2 a e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 d \sqrt {e \sin (c+d x)}}+\frac {a \sqrt {-a^2+b^2} e^2 \Pi \left (\frac {2 b}{b-\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}}-\frac {a \sqrt {-a^2+b^2} e^2 \Pi \left (\frac {2 b}{b+\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}}-\frac {2 e \sqrt {e \sin (c+d x)}}{b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.
time = 15.87, size = 434, normalized size = 1.06 \begin {gather*} -\frac {\left (\frac {1}{20}-\frac {i}{20}\right ) \cos (c+d x) \left (a+b \sqrt {\cos ^2(c+d x)}\right ) (e \sin (c+d x))^{3/2} \left (-5 \left (a^2-b^2\right ) \left (2 \sqrt [4]{-a^2+b^2} \text {ArcTan}\left (1-\frac {(1+i) \sqrt {b} \sqrt {\sin (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-2 \sqrt [4]{-a^2+b^2} \text {ArcTan}\left (1+\frac {(1+i) \sqrt {b} \sqrt {\sin (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )+\sqrt [4]{-a^2+b^2} \log \left (\sqrt {-a^2+b^2}-(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\sin (c+d x)}+i b \sin (c+d x)\right )-\sqrt [4]{-a^2+b^2} \log \left (\sqrt {-a^2+b^2}+(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\sin (c+d x)}+i b \sin (c+d x)\right )+(4+4 i) \sqrt {b} \sqrt {\sin (c+d x)}\right )+(4+4 i) a b^{3/2} F_1\left (\frac {5}{4};\frac {1}{2},1;\frac {9}{4};\sin ^2(c+d x),\frac {b^2 \sin ^2(c+d x)}{-a^2+b^2}\right ) \sin ^{\frac {5}{2}}(c+d x)\right )}{b^{3/2} \left (-a^2+b^2\right ) d \sqrt {\cos ^2(c+d x)} (a+b \cos (c+d x)) \sin ^{\frac {3}{2}}(c+d x)} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*Sin[c + d*x])^(3/2)/(a + b*Cos[c + d*x]),x]

[Out]

((-1/20 + I/20)*Cos[c + d*x]*(a + b*Sqrt[Cos[c + d*x]^2])*(e*Sin[c + d*x])^(3/2)*(-5*(a^2 - b^2)*(2*(-a^2 + b^
2)^(1/4)*ArcTan[1 - ((1 + I)*Sqrt[b]*Sqrt[Sin[c + d*x]])/(-a^2 + b^2)^(1/4)] - 2*(-a^2 + b^2)^(1/4)*ArcTan[1 +
 ((1 + I)*Sqrt[b]*Sqrt[Sin[c + d*x]])/(-a^2 + b^2)^(1/4)] + (-a^2 + b^2)^(1/4)*Log[Sqrt[-a^2 + b^2] - (1 + I)*
Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*b*Sin[c + d*x]] - (-a^2 + b^2)^(1/4)*Log[Sqrt[-a^2 + b^2] +
(1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*b*Sin[c + d*x]] + (4 + 4*I)*Sqrt[b]*Sqrt[Sin[c + d*x
]]) + (4 + 4*I)*a*b^(3/2)*AppellF1[5/4, 1/2, 1, 9/4, Sin[c + d*x]^2, (b^2*Sin[c + d*x]^2)/(-a^2 + b^2)]*Sin[c
+ d*x]^(5/2)))/(b^(3/2)*(-a^2 + b^2)*d*Sqrt[Cos[c + d*x]^2]*(a + b*Cos[c + d*x])*Sin[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1067\) vs. \(2(448)=896\).
time = 0.20, size = 1068, normalized size = 2.60

method result size
default \(\text {Expression too large to display}\) \(1068\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sin(d*x+c))^(3/2)/(a+b*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

(-2*e/b*(e*sin(d*x+c))^(1/2)+1/4*e^3/b*(e^2*(a^2-b^2)/b^2)^(1/4)/(a^2*e^2-b^2*e^2)*2^(1/2)*ln((e*sin(d*x+c)+(e
^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(e*sin(d*x+c)-(e^2*(a^2-b^2)/b
^2)^(1/4)*(e*sin(d*x+c))^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))*a^2-1/4*e^3*b*(e^2*(a^2-b^2)/b^2)^(1/4)/(a^
2*e^2-b^2*e^2)*2^(1/2)*ln((e*sin(d*x+c)+(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/
b^2)^(1/2))/(e*sin(d*x+c)-(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+1
/2*e^3/b*(e^2*(a^2-b^2)/b^2)^(1/4)/(a^2*e^2-b^2*e^2)*2^(1/2)*arctan(2^(1/2)/(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d
*x+c))^(1/2)+1)*a^2-1/2*e^3*b*(e^2*(a^2-b^2)/b^2)^(1/4)/(a^2*e^2-b^2*e^2)*2^(1/2)*arctan(2^(1/2)/(e^2*(a^2-b^2
)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)+1)+1/2*e^3/b*(e^2*(a^2-b^2)/b^2)^(1/4)/(a^2*e^2-b^2*e^2)*2^(1/2)*arctan(2^(1
/2)/(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)-1)*a^2-1/2*e^3*b*(e^2*(a^2-b^2)/b^2)^(1/4)/(a^2*e^2-b^2*e^2
)*2^(1/2)*arctan(2^(1/2)/(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)-1)+(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)*e
^2*a*(-1/b^2*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)*E
llipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))+(-a^2+b^2)/b^2*(-1/2/b/(-a^2+b^2)^(1/2)*(-sin(d*x+c)+1)^(1/2)*(2*s
in(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1-(-a^2+b^2)^(1/2)/b)*EllipticPi((-sin(
d*x+c)+1)^(1/2),1/(1-(-a^2+b^2)^(1/2)/b),1/2*2^(1/2))+1/2/b/(-a^2+b^2)^(1/2)*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+
c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1+(-a^2+b^2)^(1/2)/b)*EllipticPi((-sin(d*x+c)+
1)^(1/2),1/(1+(-a^2+b^2)^(1/2)/b),1/2*2^(1/2))))/cos(d*x+c)/(e*sin(d*x+c))^(1/2))/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(3/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

e^(3/2)*integrate(sin(d*x + c)^(3/2)/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(3/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (e \sin {\left (c + d x \right )}\right )^{\frac {3}{2}}}{a + b \cos {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))**(3/2)/(a+b*cos(d*x+c)),x)

[Out]

Integral((e*sin(c + d*x))**(3/2)/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(3/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(e^(3/2)*sin(d*x + c)^(3/2)/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (e\,\sin \left (c+d\,x\right )\right )}^{3/2}}{a+b\,\cos \left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sin(c + d*x))^(3/2)/(a + b*cos(c + d*x)),x)

[Out]

int((e*sin(c + d*x))^(3/2)/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________